ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1877]      



Задача 77953

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
Сложность: 2+
Классы: 8,9

Решить систему пятнадцати уравнений с пятнадцатью неизвестными:   x1x2 = x2x3 = ... = x14x15 = x15x1 = 1.

Прислать комментарий     Решение

Задача 77957

Темы:   [ Приближения чисел ]
[ Десятичные дроби ]
Сложность: 2+
Классы: 9

Вычислить с шестьюдесятью десятичными знаками     (60 девяток).

Прислать комментарий     Решение

Задача 77964

Темы:   [ Числовые таблицы и их свойства ]
[ Отношение порядка ]
Сложность: 2+
Классы: 6,7,8,9

200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Прислать комментарий     Решение

Задача 77970

Темы:   [ Делимость чисел. Общие свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8,9

Докажите, что при любом натуральном n число  n² + 8n + 15  не делится на  n + 4.

Прислать комментарий     Решение

Задача 77979

Темы:   [ Описанные четырехугольники ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1877]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .