ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1877]      



Задача 76501

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Разделить  a128b128  на  (a + b)(a² + b²)(a4 + b4)(a8 + b8)(a16 + b16)(a32 + b32)(a64 + b64).

Прислать комментарий     Решение


Задача 76506

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 10,11

Разделить  a2kb2k  на  (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1).

Прислать комментарий     Решение

Задача 77938

Темы:   [ Тождественные преобразования ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 2+
Классы: 7,8,9

Докажите тождество   (ax + by + cz)² + (bx + cy + az)² + (cx + ay + bz)² = (cx + by + az)² + (bx + ay + cz)² + (ax + cy + bz)².

Прислать комментарий     Решение

Задача 77939

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.
Прислать комментарий     Решение


Задача 77945

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 2+
Классы: 10,11

Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1877]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .