ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 105072

Тема:   [ Тождественные преобразования ]
Сложность: 2
Классы: 7,8,9

Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

Прислать комментарий     Решение

Задача 105074

Темы:   [ Разные задачи на разрезания ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 7,8,9

Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

Прислать комментарий     Решение

Задача 105078

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Уравнения высших степеней (прочее) ]
Сложность: 3
Классы: 7,8,9

Решите уравнение  (x + 1)63 + (x + 1)62(x – 1) + (x + 1)61(x – 1)² + ... + (x – 1)63 = 0.

Прислать комментарий     Решение

Задача 105090

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение  НОД(m + 2000n, n + 2000m)?

Прислать комментарий     Решение

Задача 105073

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9,10

В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .