ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 78060

Темы:   [ Наименьший или наибольший угол ]
[ Системы точек ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.
Прислать комментарий     Решение


Задача 78070

Тема:   [ Теорема о группировке масс ]
Сложность: 3-
Классы: 10,11

В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.
Прислать комментарий     Решение


Задача 78061

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.

Прислать комментарий     Решение

Задача 78062

Темы:   [ Ломаные ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.

Прислать комментарий     Решение

Задача 78068

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 9,10,11

Пусть a, b, c, d, l – целые числа. Докажите, что если дробь     сократима на число k, то  ad – bc  делится на k.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .