ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 76414

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Средние величины ]
Сложность: 2
Классы: 8,9

Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.

Прислать комментарий     Решение

Задача 76417

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 8,9

Поезд проходит мимо наблюдателя в течение t1 секунд, при той же скорости он проходит через мост длиной в a метров в течение t2 секунд.
Найти длину и скорость поезда.

Прислать комментарий     Решение

Задача 76424

Тема:   [ Отношения линейных элементов подобных треугольников ]
Сложность: 2+
Классы: 9

В треугольнике ABC из произвольной точки D на стороне AB проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 76429

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Неравенство Коши ]
Сложность: 2+
Классы: 8,9

Сколько действительных решений имеет система двух уравнений с тремя неизвестными:
   x + y = 2,
   xy – z² = 1 ?

Прислать комментарий     Решение

Задача 76421

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Арифметическая прогрессия ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3-
Классы: 8,9

Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен $ {\frac{1}{3}}$ одной из высот.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .