ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 76424
УсловиеВ треугольнике ABC из произвольной точки D на стороне AB проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC. РешениеРадиусы (а значит, и длины) описанных окружностей подобных треугольников ADG, DBF и ABC пропорциональны соответственным сторонам, поэтому все следует из равенства AD + DB = AB. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|