ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

Вниз   Решение


На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)

ВверхВниз   Решение


Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1808]      



Задача 97907

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Автор: Фольклор

Даны два двузначных числа – X и Y. Известно, что X вдвое больше Y, одна цифра числа Y равна сумме, а другая – разности цифр числа X.
Найти эти числа.

Прислать комментарий     Решение

Задача 97924

Тема:   [ Разные задачи на разрезания ]
Сложность: 3-
Классы: 6,7,8

Автор: Фомин С.В.

Кафельная плитка имеет форму прямоугольного треугольника с катетами 1 дм и 2 дм. Можно ли из 20 таких плиток сложить квадрат?

Прислать комментарий     Решение

Задача 97925

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Можно ли число 1986 представить в виде суммы шести квадратов нечётных чисел?

Прислать комментарий     Решение

Задача 97928

Темы:   [ Метод координат на плоскости ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3-
Классы: 8,9,10

Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

Прислать комментарий     Решение

Задача 97930

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Описанные четырехугольники ]
[ Выпуклые многоугольники ]
[ Сумма длин диагоналей четырехугольника ]
[ Неравенства с углами ]
Сложность: 3-
Классы: 8,9

Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1808]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .