ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Седракян Н.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 97930

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Описанные четырехугольники ]
[ Выпуклые многоугольники ]
[ Сумма длин диагоналей четырехугольника ]
[ Неравенства с углами ]
Сложность: 3-
Классы: 8,9

Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

Прислать комментарий     Решение

Задача 66742

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

Прислать комментарий     Решение

Задача 98071

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 7,8,9

В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

Прислать комментарий     Решение

Задача 65865

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  p + q?

Прислать комментарий     Решение

Задача 66721

Темы:   [ Средняя линия треугольника ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$,  $BE \geqslant 2AM$.  Докажите, что треугольник $ABC$ тупоугольный.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .