ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 97762

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Перебор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Автор: Фольклор

a1, a2, ..., a101  – такая перестановка чисел  2, 3, ..., 102,  что ak делится на k при каждом k. Найти все такие перестановки.

Прислать комментарий     Решение

Задача 97763

Темы:   [ Площадь (прочее) ]
[ Конус ]
[ Векторы (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Площадь сферы и ее частей ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4
Классы: 10,11

В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

Прислать комментарий     Решение

Задача 97764

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Арифметическая прогрессия ]
[ Числовые таблицы и их свойства ]
Сложность: 4
Классы: 9,10,11

Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

Прислать комментарий     Решение

Задача 97765

Темы:   [ Доказательство от противного ]
[ Классические неравенства (прочее) ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

Прислать комментарий     Решение

Задача 97760

Темы:   [ Инварианты ]
[ Деление с остатком ]
[ Процессы и операции ]
[ Теория групп (прочее) ]
Сложность: 5
Классы: 8,9,10

На окружности имеются синие и красные точки. Разрешается добавить красную точку и поменять цвета её соседей, а также убрать красную точку и изменить цвета её бывших соседей. Пусть первоначально было всего две красные точки (менее двух точек оставлять не разрешается). Доказать, что за несколько разрешённых операций нельзя получить картину, состоящую из двух синих точек.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .