Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 1808]
Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что
получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и
найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?
При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?
|
|
|
Сложность: 3- Классы: 7,8,9
|
Сколько целых чисел от 1 до 1997 имеют сумму цифр, делящуюся на 5?
|
|
|
Сложность: 3- Классы: 7,8,9,10
|
a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b.
|
|
|
Сложность: 3- Классы: 7,8,9
|
Докажите, что уравнение x² + y² – z² = 1997 имеет бесконечно много решений в целых числах.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 1808]