ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 66817

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Фокусник выкладывает в ряд колоду из 52 карт и объявляет, что 51 из них будут выкинуты со стола, а останется тройка треф. Зритель на каждом шаге говорит, какую по счёту с края карту надо выкинуть, а фокусник выбирает, с левого или с правого края считать, и выкидывает соответствующую карту. При каких начальных положениях тройки треф можно гарантировать успех фокуса?
Прислать комментарий     Решение


Задача 66818

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10,11

Автор: Соколов А.

Дана окружность $\omega$ с центром O и две её различные точки A и C. Для любой другой точки P на $\omega$ отметим середины X и Y отрезков AP и CP и построим точку H пересечения высот треугольника OXY. Докажите, что положение точки H не зависит от выбора точки P.
Прислать комментарий     Решение


Задача 66819

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10,11

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
Прислать комментарий     Решение


Задача 66823

Темы:   [ Пятиугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9,10,11

Дан выпуклый пятиугольник ABCDE, в котором $AE || CD$ и AB=BC. Биссектрисы его углов A и C пересекаются в точке K. Докажите, что $BK || AE$.
Прислать комментарий     Решение


Задача 66824

Тема:   [ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Любое число x, написанное на доске, разрешается заменить либо на 3x+1, либо на [x/2]. Докажите, что если вначале написано число 1, то такими операциями можно получить любое натуральное число.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .