ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 235]      



Задача 55463

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Докажите, что точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых, содержащих его стороны, лежат на описанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 55597

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.

Прислать комментарий     Решение

Задача 66818

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10,11

Автор: Соколов А.

Дана окружность $\omega$ с центром O и две её различные точки A и C. Для любой другой точки P на $\omega$ отметим середины X и Y отрезков AP и CP и построим точку H пересечения высот треугольника OXY. Докажите, что положение точки H не зависит от выбора точки P.
Прислать комментарий     Решение


Задача 66843

Темы:   [ Ортоцентр и ортотреугольник ]
[ Ромбы. Признаки и свойства ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9,10,11

На диагонали AC ромба ABCD построен параллелограмм APQC так, что точка B лежит внутри него, а сторона AP равна стороне ромба. Докажите, что B – точка пересечения высот треугольника DPQ.
Прислать комментарий     Решение


Задача 77941

Темы:   [ Ортоцентр и ортотреугольник ]
[ Правильный (равносторонний) треугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 9

Докажите, что если ортоцентр делит высоты треугольника в одном и том же отношении, то этот треугольник — правильный.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .