ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 221]      



Задача 108600

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9

Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают.

Прислать комментарий     Решение

Задача 116393

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

В треугольнике ABC точки A1, B1, C1 – основания высот из вершин A, B, C, точки CА и CВ – проекции C1 на AC и BC соответственно.
Докажите, что прямая CАCВ делит пополам отрезки C1A1 и C1B1.

Прислать комментарий     Решение

Задача 116698

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для элементов треугольника (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 11

В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Докажите, что если  ∠A ≤ ∠B ≤ ∠C,  то  AH + BH ≥ 2R.

Прислать комментарий     Решение

Задача 66656

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

Автор: Хилько Д.

В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$.
Прислать комментарий     Решение


Задача 66682

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10,11

Высоты $AH$, $CH$ остроугольного треугольника $ABC$ пересекают внутреннюю биссектрису угла $B$ в точках $L_1$, $P_1$, а внешнюю в точках $L_2$, $P_2$. Докажите, что ортоцентры треугольников $HL_1P_1$, $HL_2P_2$ и вершина $B$ лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .