Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 234]
|
|
Сложность: 3 Классы: 8,9,10
|
Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H.
Найдите площадь треугольника ABC, если AH = 5, а высота AD равна 8.
[Ортоцентр реугольника]
|
|
Сложность: 3+ Классы: 10,11
|
Точки a1, a2 и a3 расположены на единичной окружности zz = 1.
Докажите, что точка h = a1 + a2 + a3 является ортоцентром треугольника с вершинами в точках a1, a2 и a3.
Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если DE = 5 см.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 234]