Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 235]
|
|
Сложность: 4- Классы: 9,10
|
В остроугольном треугольнике ABC AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что AH = AXA и H ≠ XA. Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.
|
|
Сложность: 4- Классы: 9,10
|
Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что PQ || BC.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 235]