ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78187
Темы:    [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.


Подсказка

См. задачу 55463.


Ответ

Точка пересечения высот треугольника.

Замечания

Нетрудно понять, что такая точка единственна.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 22
Год 1959
вариант
Класс 7
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .