Страница: 1
2 3 4 5 6 7 >> [Всего задач: 145]
В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:
По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?
|
|
Сложность: 2+ Классы: 6,7,8
|
Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)
|
|
Сложность: 2+ Классы: 5,6,7
|
Трём мудрецам показали 9 карт: шестерку, семерку, восьмерку, девятку, десятку, валета, даму, короля и туза (карты перечислены по возрастанию их достоинства). После этого карты перемешали и каждому раздали по три карты. Каждый мудрец видит только свои карты. Первый сказал: "Моя старшая карта – валет". Тогда второй ответил: "Я знаю, какие карты у каждого из вас". У кого из мудрецов был туз?
|
|
Сложность: 3- Классы: 8,9,10,11
|
В последовательности действительных чисел $a_1$, $a_2$, $\dots$ каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y=x^2+a_nx+a_{n+1}$ (где $n=1$, $2$, $3$, $\dots$) имеют общую точку.
|
|
Сложность: 3 Классы: 8,9,10
|
Взяли пять натуральных чисел и для каждых двух записали их сумму.
Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 145]