ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 359]      



Задача 64892

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 3+
Классы: 10,11

Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

Прислать комментарий     Решение

Задача 64952

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9,10

Четырёхугольник ABCD – вписанный. На его диагоналях AC и BD отметили точки K и L соответственно так, что  AK = AB  и  DL = DC.
Докажите, что прямые KL и AD параллельны.

Прислать комментарий     Решение

Задача 65005

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

Прислать комментарий     Решение

Задача 65177

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность,  АС = а,  BD = b,  ABCD.  Найдите радиус окружности.

Прислать комментарий     Решение

Задача 65720

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник – вписанный.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 359]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .