ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 376]      



Задача 52407

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

Прислать комментарий     Решение

Задача 52409

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD. На дуге AD, не содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K соответственно на стороны AD, BC, AB и CD (или на продолжения этих сторон). Известно, что  KP = d,  а
SNQK = mSMPK.  Найдите KN.

Прислать комментарий     Решение

Задача 53615

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, диагонали которого пересекаются в точке M. Известно, что  AB = a,  CD = b,  ∠AMB = α.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 53617

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Средняя линия трапеции ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Одна из сторон вписанного четырёхугольника является диаметром окружности.
Докажите, что проекции сторон, прилегающих к этой стороне, на прямую, задающую четвёртую сторону, равны между собой.

Прислать комментарий     Решение

Задача 55458

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 376]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .