Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 376]
Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если CE = 3 и DE = DC.
В окружность вписан четырёхугольник ABCD. На дуге AD, не
содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K
соответственно на стороны AD, BC, AB и CD (или на продолжения
этих сторон). Известно, что KP = d, а
SNQK = mSMPK. Найдите KN.
В окружность вписан четырёхугольник ABCD, диагонали которого
пересекаются в точке M. Известно, что AB = a, CD = b, ∠AMB = α.
Найдите радиус окружности.
Одна из сторон вписанного четырёхугольника является диаметром окружности.
Докажите, что проекции сторон, прилегающих к этой стороне, на прямую, задающую четвёртую сторону, равны между собой.
Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 376]