ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Состоятельный Крот подсчитал, что своими запасами зерна он может целиком заполнить либо 20 больших мешков зерна, либо 32 маленьких мешка. На месяц зимовки ему необходимо 7 больших мешков зерна. Крот может обменять у других кротов 2 больших мешка на 3 маленьких. Сможет ли Крот перезимовать три месяца или ему нужны дополнительные запасы?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 376]      



Задача 52407

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если  CE = 3  и  DE = DC.

Прислать комментарий     Решение

Задача 52409

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Подобные треугольники (прочее) ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD. На дуге AD, не содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K соответственно на стороны AD, BC, AB и CD (или на продолжения этих сторон). Известно, что  KP = d,  а
SNQK = mSMPK.  Найдите KN.

Прислать комментарий     Решение

Задача 53615

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, диагонали которого пересекаются в точке M. Известно, что  AB = a,  CD = b,  ∠AMB = α.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 53617

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Средняя линия трапеции ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Одна из сторон вписанного четырёхугольника является диаметром окружности.
Докажите, что проекции сторон, прилегающих к этой стороне, на прямую, задающую четвёртую сторону, равны между собой.

Прислать комментарий     Решение

Задача 55458

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 376]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .