ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Брагин В.

Вершины правильного 45-угольника раскрашены в три цвета, причём вершин каждого цвета поровну. Докажите, что можно выбрать по три вершины каждого цвета так, чтобы три треугольника, образованные выбранными одноцветными вершинами, были равны.

Вниз   Решение


а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

ВверхВниз   Решение


На доске написаны числа
  а) 1, 2. 3, ..., 1997, 1998;
  б) 1, 2, 3, ..., 1998, 1999;
  в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?

ВверхВниз   Решение


a, b и c - длины сторон произвольного треугольника. Докажите, что

a(b - c)2 + b(c - a)2 + c(a - b)2 + 4abc > a3 + b3 + c3.


ВверхВниз   Решение


Автор: Пешнин А.

Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66314  (#10.1)

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Три прямые, пересекающиеся в одной точке ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 3+
Классы: 9,10

Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

Прислать комментарий     Решение

Задача 66315  (#10.2)

Темы:   [ Вневписанные окружности ]
[ Длины сторон (неравенства) ]
[ Против большей стороны лежит больший угол ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 9,10,11

Автор: Пешнин А.

Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника.

Прислать комментарий     Решение

Задача 66316  (#10.3)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Автор: Соколов А.

Дан выпуклый четырёхугольник ABCD. Пусть ωA, ωB, ωC, ωD – описанные окружности треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через XA произведение степени точки A относительно ωA на площадь треугольника BCD. Аналогично определим XB, XC, XD. Докажите, что  XA + XB + XC + XD = 0.

Прислать комментарий     Решение

Задача 66317  (#10.4)

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Вспомогательные подобные треугольники ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

Прислать комментарий     Решение

Задача 66318  (#10.5)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .