Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 6 Классы: 10,11
|
Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.
Дана тригармоническая четвёрка точек A, B, C и D (то есть AB·CD = AC·BD = AD·BC). Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
a) A, B, C1, D1 лежат на одной окружности;
б) точки A1, B1, C1, D1 образуют тригармоническую четвёрку.
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.
|
|
Сложность: 4 Классы: 10,11
|
B основании четырёхугольной пирамиды SABCD лежит четырёхугольник
ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.
Страница:
<< 1 2 [Всего задач: 9]