ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 66916

Темы:   [ Изогональное сопряжение ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.
Прислать комментарий     Решение


Задача 66944

Тема:   [ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9,10,11

Автор: Рябов П.

В равнобедренном треугольнике $ABC$ ($AB=BC$) проведен луч $l$ из вершины $B$. На луче внутри треугольника взяты точки $P$ и $Q$ так, что $\angle BAP=\angle QCA$. Докажите, что $\angle PAQ=\angle PCQ$.
Прислать комментарий     Решение


Задача 66974

Темы:   [ Изогональное сопряжение ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 9,10,11

Автор: Рябов П.

Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$.
Прислать комментарий     Решение


Задача 66923

Темы:   [ Изогональное сопряжение ]
[ Биссектриса угла ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $\angle A=60^{\circ}$, $AD$ – биссектриса. Построен равносторонний треугольник $PDQ$ с высотой $DA$. Прямые $PB$ и $QC$ пересекаются в точке $K$. Докажите, что $AK$ – симедиана треугольника $ABC$.
Прислать комментарий     Решение


Задача 67193

Темы:   [ Изогональное сопряжение ]
[ Описанные четырехугольники ]
[ ГМТ (прочее) ]
Сложность: 5
Классы: 9,10,11

На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .