Страница: 1
2 3 4 5 6 >> [Всего задач: 26]
Дана тригармоническая четвёрка точек A, B, C и D (то есть AB·CD = AC·BD = AD·BC). Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
a) A, B, C1, D1 лежат на одной окружности;
б) точки A1, B1, C1, D1 образуют тригармоническую четвёрку.
|
|
Сложность: 5 Классы: 10,11
|
В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$.
Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$.
Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.
|
|
Сложность: 4 Классы: 10,11
|
Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи.
|
|
Сложность: 5 Классы: 9,10,11
|
В остроугольном треугольнике $ABC$ точки $O$, $I$ – центры описанной и вписанной окружностей, $P$ – произвольная точка на отрезке $OI$, точки $P_A$, $P_B$ и $P_C$ – вторые точки пересечения прямых $PA$, $PB$ и $PC$ с окружностью $ABC$. Докажите. что биссектрисы углов $BP_AC$, $CP_BA$ и $AP_CB$ пересекаются в одной точке, лежащей на прямой $OI$.
а) Точки
A, B и
C лежат на одной прямой, а точки
A1,
B1 и
C1 – на другой. Докажите, что если
AB1 ||
BA1 и
AC1 ||
CA1, то
BC1 ||
CB1.
б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что
AB1 || BA1, AC1 || CA1 и BC1 || CB1.
Докажите, что точки A1, B1 и C1 лежат на одной прямой.
Страница: 1
2 3 4 5 6 >> [Всего задач: 26]