ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 64886

Темы:   [ Проективная геометрия (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Касающиеся сферы и инверсия ]
[ Инверсия помогает решить задачу ]
Сложность: 4+
Классы: 11

Дана тригармоническая четвёрка точек A, B, C и D (то есть  AB·CD = AC·BD = AD·BC).  Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
  a) A, B, C1, D1 лежат на одной окружности;
  б) точки A1, B1, C1, D1 образуют тригармоническую четвёрку.

Прислать комментарий     Решение

Задача 67354

Тема:   [ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

Хорда $PQ$ окружности, описанной около треугольника $ABC$, пересекает стороны $BC$, $AC$ в точках $A'$, $B'$ соответственно. Касательные к окружности в точках $A$ и $B$ пересекаются в точке $X$, а касательные в точках $P$ и $Q$ – в точке $Y$. Прямая $XY$ пересекает $AB$ в точке $C'$. Докажите, что прямые $AA'$, $BB'$ и $CC'$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66790

Темы:   [ Проективная геометрия (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 10,11

В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.
Прислать комментарий     Решение


Задача 64614

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Проективная геометрия (прочее) ]
[ Системы точек и отрезков (прочее) ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи.

Прислать комментарий     Решение

Задача 67371

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .