ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

Вниз   Решение


Диагонали параллелограмма ABCD пересекаются в точке O. Периметр параллелограмма равен 12, а разность периметров треугольников BOC и COD равна 2. Найдите стороны параллелограмма.

ВверхВниз   Решение


У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.

ВверхВниз   Решение


Семизначный код, состоящий из семи различных цифр, назовем хорошим. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?

ВверхВниз   Решение


Точки M, A и B расположены на одной прямой, причём отрезок AM вдвое больше отрезка BM. Найдите AM, если  AB = 6.

ВверхВниз   Решение


На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.

ВверхВниз   Решение


Известно, что A – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число A?

ВверхВниз   Решение


Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что  AA' = CC' и BB' = DD'.
Bерно ли, что ABCD – параллелограмм?

ВверхВниз   Решение


Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  p + q?

ВверхВниз   Решение


Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг.
Найдите сумму площадей этих кругов.

ВверхВниз   Решение


Найдите объём тетраэдра ABCD с рёбрами AB=5 , AC=1 и CD = 7 , если расстояние между серединами M и N его рёбер AC и BD равно 3, а прямая AC образует равные углы с прямыми AB , CD и MN .

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.

ВверхВниз   Решение


Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?

ВверхВниз   Решение


При делении многочлена  x1951 – 1  на  x4 + x³ + 2x² + x + 1  получается частное и остаток. Найти в частном коэффициент при x14.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 78101

Темы:   [ Делимость чисел. Общие свойства ]
[ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3+
Классы: 8,9,10

Известно, что  ax4 + bx³ + cx² + dx + e,  где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Доказать, что все числа a, b, c, d, e делятся на 7.

Прислать комментарий     Решение

Задача 110039

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Свойства коэффициентов многочлена ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Миша решил уравнение  x² + ax + b = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

Прислать комментарий     Решение

Задача 111878

Темы:   [ Кубические многочлены ]
[ Свойства коэффициентов многочлена ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].
Прислать комментарий     Решение


Задача 65736

Темы:   [ Инварианты ]
[ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена  f и g и заменить их на такие два приведённых многочлена 37-й степени  f1 и g1, что  f + g = f1 + g1  или  fg = f1g1.  Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.

Прислать комментарий     Решение

Задача 77932

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Свойства коэффициентов многочлена ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

При делении многочлена  x1951 – 1  на  x4 + x³ + 2x² + x + 1  получается частное и остаток. Найти в частном коэффициент при x14.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .