Страница: 1
2 3 4 5 6 7 >> [Всего задач: 49]
|
|
Сложность: 3- Классы: 8,9,10
|
При каких a и b уравнение x3 + ax + b = 0 имеет три различных решения, составляющих арифметическую прогрессию?
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что уравнение x³ + ax² – b = 0, где a и b вещественные и b > 0, имеет один и только один положительный корень.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней.
Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень?
|
|
Сложность: 3+ Классы: 10,11
|
Пусть a, b, c – стороны треугольника, p – его
полупериметр, а r и R – радиусы вписанной и описанной
окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 49]