ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 61059

Темы:   [ Теорема Виета ]
[ Системы линейных уравнений ]
[ Кубические многочлены ]
Сложность: 3+
Классы: 8,9,10,11

Пусть a, b и c – три различных числа. Решите систему    

Прислать комментарий     Решение

Задача 61267

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 3+
Классы: 9,10,11

Докажите, что если x1, x2, x3 – корни уравнения  x³ + px + q = 0, то  

Прислать комментарий     Решение

Задача 73623

Темы:   [ Теорема Виета ]
[ Арифметическая прогрессия ]
[ Кубические многочлены ]
Сложность: 3+
Классы: 9,10,11

Какому условию должны удовлетворять коэффициенты a, b, c уравнения  x³ + ax² + bx + c,  чтобы три его корня составляли арифметическую прогрессию?

Прислать комментарий     Решение

Задача 61039

Тема:   [ Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

а) Известно, что  x + y = u + v,  x2 + y2 = u2 + v2.
Докажите, что при любом натуральном n выполняется равенство  xn + yn = un + vn.

б) Известно, что  x + y + z = u + v + t,  x2 + y2 + z2 = u2 + v2 + t2x3 + y3 + z3 = u3 + v3 + t3.
Докажите, что при любом натуральном n выполняется равенство  xn + yn + zn = un + vn + tn.

Прислать комментарий     Решение

Задача 65679

Темы:   [ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Уравнение с целыми коэффициентами  x4 + ax³ + bx² + cx + d = 0  имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .