ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



Задача 107788

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Кубические многочлены ]
Сложность: 4
Классы: 9,10,11

Целые числа a, b и c таковы, что числа  a/b + b/c + c/a  и  a/с + с/b + b/a  тоже целые. Докажите, что  |a| = |b| = |c|.

Прислать комментарий     Решение

Задача 109621

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?

Прислать комментарий     Решение

Задача 109777

Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
[ Формула Герона ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Рациональные и иррациональные числа ]
Сложность: 5-
Классы: 10,11

Длины сторон треугольника являются корнями кубического уравнения с рациональными коэффициентами.
Докажите, что длины высот треугольника являются корнями уравнения шестой степени с рациональными коэффициентами.

Прислать комментарий     Решение

Задача 111831

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Существуют ли такие ненулевые числа a, b, c, что при любом  n > 3  можно найти многочлен вида  Pn(x) = xn + ... + ax² + bx + c,  имеющий ровно n (не обязательно различных) целых корней?

Прислать комментарий     Решение

Задача 97871

Темы:   [ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
[ Теорема Виета ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Даны три действительных числа: a, b и c. Известно, что  a + b + c > 0,  ab + bc + ca > 0,  abc > 0.  Докажите, что  a > 0,  b > 0  и  c > 0.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .