|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дана последовательность чисел x1, x2, ... . Известно, что 0<x1<1 и xk+1=xk-xk2 для всех k>1. Докажите, что x12+x22+...+xn2<1 для любого n>1. |
Задача 53730
УсловиеДокажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A. РешениеПусть O1 и O2 – центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC. Точки O1 и O2 лежат на биссектрисе внешнего угла A, которая перпендикулярна биссектрисе угла A, проходящей через центр вписанной окружности. Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|