Страница:
<< 5 6 7 8 9 10
11 >> [Всего задач: 52]
|
|
Сложность: 4 Классы: 9,10,11
|
Известно, что многочлен (x + 1)n – 1 делится на некоторый многочлен P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0 чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на k + 1.
[Правило знаков Декарта]
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что количество положительных корней многочлена f(x) = anxn + ... + a1x + a0 не превосходит числа перемен знака в последовательности an, ..., a1, a0.
|
|
Сложность: 5 Классы: 10,11
|
Даны многочлены f(x) и g(x) с целыми неотрицательными коэффициентами, m – наибольший коэффициент многочлена f. Известно, что для некоторых натуральных чисел a < b имеют место равенства f(a) = g(a) и f(b) = g(b). Докажите, что если b > m, то многочлены f и g совпадают.
[Формула Тейлора для многочленов]
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням x – c:
P(
x) =
ck(
x – c)
k,
причем коэффициенты ck могут быть найдены по формуле
|
|
Сложность: 5- Классы: 10,11
|
Для некоторого многочлена существует бесконечное множество его значений,
каждое из которых многочлен принимает по крайней мере в двух целочисленных точках.
Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.
Страница:
<< 5 6 7 8 9 10
11 >> [Всего задач: 52]