ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 61166

Темы:   [ Метод спуска ]
[ Рациональные и иррациональные числа ]
Сложность: 4
Классы: 9,10,11

а) Используя геометрические соображения, докажите, что основание и боковая сторона равнобедренного треугольника с углом 36o при вершине несоизмеримы.
б) Придумайте геометрическое доказательство иррациональности $ \sqrt{2}$.

Прислать комментарий     Решение

Задача 111829

Темы:   [ Метод спуска ]
[ Целая и дробная части. Принцип Архимеда ]
[ Обыкновенные дроби ]
[ Рекуррентные соотношения ]
Сложность: 4+
Классы: 9,10,11

В бесконечной последовательности  (xn)  первый член x1 – рациональное число, большее 1, и  xn+1 = xn + 1/[xn]  при всех натуральных n.
Докажите, что в этой последовательности есть целое число.

Прислать комментарий     Решение

Задача 77882

Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

Доказать, что равенство  x² + y² + z² = 2xyz  для целых x, y и z возможно только при  x = y = z = 0.

Прислать комментарий     Решение

Задача 60852

 [Метод спуска]
Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

Прислать комментарий     Решение

Задача 77885

Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Найти такие целые числа x, y, z и t, что  x² + y² + z² + t² = 2xyzt.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .