ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 98141

Темы:   [ Взвешивания ]
[ Метод спуска ]
[ Отношение порядка ]
Сложность: 4
Классы: 7,8,9

Автор: Анджанс А.

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

Прислать комментарий     Решение

Задача 109544

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 11 ]
[ Метод спуска ]
Сложность: 3+
Классы: 7,8,9

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

Прислать комментарий     Решение

Задача 78759

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Метод спуска ]
Сложность: 4
Классы: 8,9,10

Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.

Прислать комментарий     Решение

Задача 98131

Темы:   [ Взвешивания ]
[ Отношение порядка ]
[ Метод спуска ]
Сложность: 4
Классы: 8,9

Автор: Анджанс А.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

Прислать комментарий     Решение

Задача 60589

Темы:   [ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Метод спуска ]
Сложность: 5-
Классы: 9,10,11

Решите в целых числах уравнения:   а)  x² – xy – y² = 1;   б)  x² – xy – y² = –1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .