ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Вниз   Решение


В треугольнике KLM взяты точка A на стороне LM, а точка B – на стороне KM. Отрезки KA и LB пересекаются в точке O,  LA : AM = 3 : 4,  KO : OA = 3 : 2.
Найдите  LO : OB.

ВверхВниз   Решение


Автор: Анджанс А.

Берутся всевозможные непустые подмножества из множества чисел   1, 2, 3, ..., n.  Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.

ВверхВниз   Решение


Ладья стоит на левом поле клетчатой полоски 1×30 и за ход может сдвинуться на любое количество клеток вправо.
  а) Сколькими способами она может добраться до крайнего правого поля?
  б) Сколькими способами она может добраться до крайнего правого поля ровно за семь ходов?

ВверхВниз   Решение


Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый?

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

ВверхВниз   Решение


На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.

ВверхВниз   Решение


В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

ВверхВниз   Решение


Автор: Юран А.Ю.

Целое число $n$ таково, что уравнение  $x^2 + y^2 + z^2 - xy - yz - zx = n$  имеет решение в целых числах.
Докажите, что тогда и уравнение  $x^2 + y^2 - xy = n$  имеет решение в целых числах.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 60996

Темы:   [ Многочлены (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие многочлены P(x) и Q(x), что  (x + 1)P(x) + (x4 + 1)Q(x) = 1.

Прислать комментарий     Решение

Задача 61437

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Пусть  f(x) – многочлен степени m. Докажите, что если  m < n,  то  Δnf(x) = 0.  Чему равна величина Δmf(x)?

Прислать комментарий     Решение

Задача 66160

Темы:   [ Многочлены (прочее) ]
[ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Прислать комментарий     Решение

Задача 66834

Темы:   [ Многочлены (прочее) ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10,11

Многочлен  $P(x, y)$  таков, что для всякого целого  $n\geqslant 0$  каждый из многочленов  $P(n, y)$  и  $P(x, n)$  либо тождественно равен нулю, либо имеет степень не выше $n$.
Может ли многочлен  $P(x, x)$ иметь нечётную степень?

Прислать комментарий     Решение

Задача 66844

Темы:   [ Многочлены (прочее) ]
[ Тождественные преобразования ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Юран А.Ю.

Целое число $n$ таково, что уравнение  $x^2 + y^2 + z^2 - xy - yz - zx = n$  имеет решение в целых числах.
Докажите, что тогда и уравнение  $x^2 + y^2 - xy = n$  имеет решение в целых числах.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .