Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 66]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы $a(x) + b(x)$, где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
а) ровно одним способом?
б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
Докажите, что p(x) можно представить в виде многочлена от (x – a/2)².
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что многочлен вида x200y200 + 1 нельзя представить в виде произведения многочленов от одного только x и одного только y.
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
|
[Метод Лобачевского]
|
|
Сложность: 4- Классы: 10,11
|
Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 имеет корни x1, x2, ..., xn, причем |x1| > |x2| > ... > |xn|. В задаче 60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа
На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов P0(x), P1(x), P2(x), ..., что P0(x) = P(x) и многочлен Pk(x) имеет корни
Пусть
Докажите, что
а)
б)
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 66]