ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61333
Темы:    [ Многочлены (прочее) ]
[ Итерации ]
[ Теорема Виета ]
Сложность: 4-
Классы: 10,11
Название задачи: Метод Лобачевского.
В корзину
Прислать комментарий

Условие

Пусть многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  причем  |x1| > |x2| > ... > |xn|.  В задаче  60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа     На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов  P0(x), P1(x), P2(x), ...,  что  P0(x) = P(x)  и многочлен Pk(x) имеет корни     Пусть     Докажите, что

  а)  

  б)  


Решение

  а)       поскольку при  k → ∞  выражение в скобках стремится к 1, а показатель степени – к нулю.

  б) Рассмотрим случай  l = 2  (остальные аналогичны).

 

что стремится к |x2| по тем же причинам, что в а).

Замечания

Знаки корней определяются подстановкой полученных результатов в P(x).

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 9
Название Уравнения и системы
Тема Неопределено
параграф
Номер 3
Название Итерации
Тема Алгебраические уравнения и системы уравнений (прочее)
задача
Номер 09.083

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .