|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2. Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки? Существуют ли нецелые числа x и y, для которых {x}{y} = {x + y}? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]
Решить уравнение [x³] + [x²] + [x] = {x} − 1.
Сколько решений в натуральных числах имеет уравнение [x/10] = [x/11] + 1?
Существуют ли нецелые числа x и y, для которых {x}{y} = {x + y}?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|