ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 50]      



Задача 65726

Темы:   [ Исследование квадратного трехчлена ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Автор: Храбров А.

Существуют ли такие целые числа a и b, что
  а) уравнение  x² + ax + b = 0  не имеет корней, а уравнение  [x²] + ax + b = 0 имеет?
  б) уравнение  x² + 2ax + b = 0  не имеет корней, а уравнение  [x²] + 2ax + b = 0  имеет?
Прислать комментарий     Решение


Задача 78102

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 10,11

Решить уравнение  x³ – [x] = 3.

Прислать комментарий     Решение

Задача 78650

Темы:   [ Деление с остатком ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.

Прислать комментарий     Решение

Задача 98298

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

Прислать комментарий     Решение

Задача 66897

Темы:   [ Квадратный трехчлен (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 8,9,10,11

Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .