ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 116627

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Решите неравенство:  [x]·{x} < x – 1.

Прислать комментарий     Решение

Задача 65593

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Иррациональные неравенства ]
Сложность: 3+
Классы: 7,8,9

Известно, что  а > 1.  Обязательно ли имеет место равенство   = ?

Прислать комментарий     Решение

Задача 97865

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Автор: Варге И.

а) Привести пример такого положительного a, что  {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?

Прислать комментарий     Решение

Задача 109946

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Исследование квадратного трехчлена ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3+
Классы: 9,10

Решите уравнение  {(x + 1)³} = x³.

Прислать комментарий     Решение

Задача 67513

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Существует ли такое положительное число $x > 1$, что $$\{x\} > \{x^2\} > \{x^3\} > \ldots > \{x^{100}\}?$$ (Здесь $\{x\}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .