ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 111829

Темы:   [ Метод спуска ]
[ Целая и дробная части. Принцип Архимеда ]
[ Обыкновенные дроби ]
[ Рекуррентные соотношения ]
Сложность: 4+
Классы: 9,10,11

В бесконечной последовательности  (xn)  первый член x1 – рациональное число, большее 1, и  xn+1 = xn + 1/[xn]  при всех натуральных n.
Докажите, что в этой последовательности есть целое число.

Прислать комментарий     Решение

Задача 78244

Темы:   [ Теория игр (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Скалярное произведение. Соотношения ]
Сложность: 4+
Классы: 9,10,11

Играют двое; один из них загадывает набор из целых чисел ( x1, x2,..., xn) -- однозначных, как положительных, так и отрицательных. Второму разрешается спрашивать, чему равна сумма a1x1 + ... + anxn, где (a1...an) -- любой набор. Каково наименьшее число вопросов, за которое отгадывающий узнает задуманный набор?
Прислать комментарий     Решение


Задача 65760

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 10,11

В координатном пространстве провели все плоскости с уравнениями  x ± y ± z = n  (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка  (x0, y0, z0)  с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка  (kx0, ky0, kz0)  лежит строго внутри некоторого октаэдра разбиения.

Прислать комментарий     Решение

Задача 105220

Темы:   [ Раскладки и разбиения ]
[ Целая и дробная части. Принцип Архимеда ]
[ Линейные неравенства и системы неравенств ]
[ Системы алгебраических неравенств ]
[ Средние величины ]
Сложность: 5+
Классы: 9,10,11

Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Прислать комментарий     Решение

Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .