|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный. Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.
Найдите основание равнобедренного треугольника, если его боковая сторона равна a, а высота, опущенная на основание, равна отрезку, соединяющему середину основания с серединой боковой стороны. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 604]
Возможно ли, чтобы одна биссектриса треугольника делила пополам другую биссектрису?
Докажите, что сумма расстояний от произвольной точки, лежащей на основании равнобедренного треугольника, до боковых сторон постоянна.
Найдите основание равнобедренного треугольника, если его боковая сторона равна a, а высота, опущенная на основание, равна отрезку, соединяющему середину основания с серединой боковой стороны.
Косинус угла при основании равнобедренного треугольника равен 3/5, высота, опущенная на основание, равна h.
На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 604] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|