|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В остроугольный треугольник вписана окружность радиуса R. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен Q. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники. Докажите равенство:
cos
В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.) |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 604]
В треугольнике ABC на стороне AC отмечены точки D и E так, что AD = DE = EC. Может ли оказаться, что ∠ABD = ∠DBE = ∠EBC?
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Точка M лежит на боковой стороне AC равнобедренного треугольника ABC с основанием BC, причём BM = BC. Найдите MC, если BC = 1 и AB = 2.
В прямоугольном треугольнике ABC с прямым углом C угол A равен 30°, точка I – центр вписанной окружности ABC, D – точка пересечения отрезка BI с этой окружностью. Докажите, что отрезки AI и CD перпендикулярны.
В прямоугольном треугольнике ABC с прямым углом при вершине C высота CH и биссектриса AK пересекаются в точке M.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 604] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|