ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 242]      



Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Задача 103765

Темы:   [ Вспомогательные равные треугольники ]
[ Наибольшая или наименьшая длина ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 7

Автор: Ботин Д.А.

Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?

Прислать комментарий     Решение

Задача 53355

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3-
Классы: 8,9

На диагонали AC квадрата ABCD взята точка M, причём  AM = AB.  Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что  BH = HM = MC.

Прислать комментарий     Решение

Задача 66913

Тема:   [ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 7,8,9

В треугольнике $ABC$ $\angle C=90^{\circ}$, $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. На отрезках $AB_0$ и $BA_0$ во внешнюю сторону построены как на основаниях равносторонние треугольники с вершинами $C_1$, $C_2$. Найдите угол $C_0C_1C_2$.
Прислать комментарий     Решение


Задача 78469

Темы:   [ Вспомогательные равные треугольники ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 7,8

Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 242]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .