|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На окружности отмечено десять точек. Сколько существует незамкнутых несамопересекающихся девятизвенных ломаных с вершинами в этих точках? Две окружности пересекаются в точках A и B. Через точку A проведена секущая, вторично пересекающаяся с окружностями в точках P и Q. Какую линию описывает середина отрезка PQ, когда секущая вращается вокруг точки A? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 604]
Высоты треугольника ABC, проведённые из вершин B и C
пересекаются в точке M. Известно, что BM = CM.
Равные отрезки AB и CD пересекаются в точке O и делятся ею в отношении AO : OB = CO : OD = 1 : 2. Прямые AD и BC пересекаются в точке M.
Прямая, пересекающая основание равнобедренного треугольника и проходящая через вершину, разбивает этот треугольник на два треугольника.
Пусть AE и CD – биссектрисы равнобедренного треугольника ABC (AB = BC). Докажите, что ∠BED = 2∠AED.
Через вершины A и C треугольника ABC проведены прямые, перпендикулярные биссектрисе угла ABC и пересекающие прямые CB и BA в точках K и M соответственно. Найдите AB, если BM = 8, KC = 1.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 604] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|