|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи B равнобедренном треугольнике ABС на боковой стороне BС отмечена точка M так, что отрезок MС равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK. Точки A, B и C расположены на одной прямой. Через точку B проходит некоторая прямая. Пусть M - произвольная точка на этой прямой. Докажите, что расстояние между центрами окружностей, описанных около треугольников ABM и CBM не зависит от положения точки M. Найдите это расстояние, если AC = a,
В выпуклом четырёхугольнике MNPQ диагональ NQ является
биссектрисой угла PNM и пересекается с диагональю PM в точке S. Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
В трапеции ABCD диагонали AC и BD взаимно перпендикулярны,
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 408]
Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.
Докажите, что площадь прямоугольного треугольника равна произведению длин отрезков, на которые гипотенуза делится точкой касания с вписанной окружностью.
Даны три треугольника: A1A2A3, B1B2B3, C1C2C3. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида AiBjCk, где i, j, k независимо пробегают значения 1, 2, 3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.
В треугольник ABC вписана окружность с центром O. Медиана AD пересекает её в точках X и Y. Найдите угол XOY, если AC = AB + AD.
В трапеции ABCD диагонали AC и BD взаимно перпендикулярны,
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 408] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|