ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

Вниз   Решение


Диагонали параллелограмма ABCD пересекаются в точке O. Периметр параллелограмма равен 12, а разность периметров треугольников BOC и COD равна 2. Найдите стороны параллелограмма.

ВверхВниз   Решение


У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.

ВверхВниз   Решение


Семизначный код, состоящий из семи различных цифр, назовем хорошим. Паролем сейфа является хороший код. Известно, что сейф откроется, если введён хороший код и на каком-нибудь месте цифра кода совпала с соответствующей цифрой пароля. Можно ли гарантированно открыть сейф быстрее, чем за семь попыток?

ВверхВниз   Решение


Точки M, A и B расположены на одной прямой, причём отрезок AM вдвое больше отрезка BM. Найдите AM, если  AB = 6.

ВверхВниз   Решение


На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.

ВверхВниз   Решение


Известно, что A – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число A?

ВверхВниз   Решение


Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что  AA' = CC' и BB' = DD'.
Bерно ли, что ABCD – параллелограмм?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 100]      



Задача 57080

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Момент инерции ]
Сложность: 3
Классы: 9

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Прислать комментарий     Решение

Задача 111055

Темы:   [ Метод координат ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

На плоскости даны точки A(1;2) , B(2;1) , C(3;-3) , D(0;0) . Они являются вершинами выпуклого четырёхугольника ABCD . В каком отношении точка пересечения его диагоналей делит диагональ AC ?
Прислать комментарий     Решение


Задача 111056

Темы:   [ Метод координат ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

На плоскости даны точки A(-1;2) , B(-2;1) , C(-3;-3) , D(0;0) . Они являются вершинами выпуклого четырёхугольника ABCD . В каком отношении точка пересечения его диагоналей делит диагональ AC ?
Прислать комментарий     Решение


Задача 116138

Темы:   [ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 10,11

Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что  AA' = CC' и BB' = DD'.
Bерно ли, что ABCD – параллелограмм?

Прислать комментарий     Решение

Задача 67025

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Векторы помогают решить задачу ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 3
Классы: 7,8,9,10,11

Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .