ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 91]      



Задача 108192

Темы:   [ Векторы помогают решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Скалярное произведение. Соотношения ]
[ Четырехугольники (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Сонкин М.

Дан четырёхугольник ABCD , в котором AB=AD и ABC= ADC=90o . На сторонах BC и CD выбраны соответственно точки F и E так, что DF AE . Докажите, что AF BE .
Прислать комментарий     Решение


Задача 66488

Тема:   [ Векторы помогают решить задачу ]
Сложность: 5
Классы: 8,9,10,11

На сторонах выпуклого шестиугольника $ABCDEF$ во внешнюю сторону построены правильные треугольники $ABC_1$, $BCD_1$, $CDE_1$, $DEF_1$, $EFA_1$ и $FAB_1$. Оказалось, что треугольник $B_1D_1F_1$ правильный. Докажите, что треугольник $A_1C_1E_1$ также правильный.
Прислать комментарий     Решение


Задача 108658

Темы:   [ Векторы помогают решить задачу ]
[ Вспомогательная окружность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9

Пусть B' — точка описанной окружности остроугольного треугольника ABC , диаметрально противоположная вершине B ; I — центр вписанной окружности треугольника ABC ; M — точка касания вписанной окружности со стороной AC . На сторонах AB и BC выбраны соответственно точки K и L , причём KB=MC и LB=AM . Докажите, что прямые B'I и KL перпендикулярны.
Прислать комментарий     Решение


Задача 55374

Темы:   [ Пятиугольники ]
[ Векторы помогают решить задачу ]
Сложность: 2-
Классы: 8,9

В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN.

Прислать комментарий     Решение

Задача 57682

Темы:   [ Векторы сторон многоугольников ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3-
Классы: 8,9,10

Стороны треугольника T параллельны медианам треугольника T1. Докажите, что медианы треугольника T параллельны сторонам треугольника T1.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 91]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .