ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 35484

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 7,8,9

На столе лежат монеты без наложений. Докажите, что одну из них можно выдвинуть, не задевая остальных.
Прислать комментарий     Решение


Задача 34936

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 7,8,9,10

На каждой из 15 планет, расстояния между которыми попарно различны, находится по астроному, который наблюдает ближайшую к нему планету. Докажите, что некоторую планету никто не наблюдает.
Прислать комментарий     Решение


Задача 58053

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9

На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.
Прислать комментарий     Решение


Задача 58054

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9

На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная?
Прислать комментарий     Решение


Задача 97867

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 7,8,9

Квадрат разбит на пять прямоугольников так, что четыре угла квадрата являются углами четырёх прямоугольников, площади которых равны между собой, а пятый прямоугольник не имеет общих точек со сторонами квадрата. Докажите, что этот пятый прямоугольник есть квадрат.  
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .