ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97867
Темы:    [ Наименьшее или наибольшее расстояние (длина) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Квадрат разбит на пять прямоугольников так, что четыре угла квадрата являются углами четырёх прямоугольников, площади которых равны между собой, а пятый прямоугольник не имеет общих точек со сторонами квадрата. Докажите, что этот пятый прямоугольник есть квадрат.  

Решение

Рассмотрим наименьшую из сторон "угловых" прямоугольников. Тогда его вторая сторона является наибольшей. Но также наибольшей является сторона соседнего прямоугольника (дополняющая наименьшую сторону до стороны исходного квадрата). Поэтому эти прямоугольники равны. Отсюда, очевидно, следует равенство всех "угловых" прямоугольников.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант весенний тур, подготовительный вариант, 9-10 класс
Задача
Номер 5
олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант весенний тур, основной вариант, 7-8 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .