ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



Задача 115396

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Обход графов ]
[ Подсчет двумя способами ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10,11

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более, чем в полтора раза.

Прислать комментарий     Решение

Задача 79254

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Круг, сектор, сегмент и проч. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Блох А.

На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?
Прислать комментарий     Решение


Задача 58055

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Докажите, что по крайней мере одно из оснований перпендикуляров, опущенных из внутренней точки выпуклого многоугольника на его стороны, лежит на самой стороне, а не на ее продолжении.
Прислать комментарий     Решение


Задача 58056

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.
Прислать комментарий     Решение


Задача 78241

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Имеется 100 точек на плоскости, причём расстояние между любыми двумя из них не превосходит 1, и если A, B, C — любые три точки из данных, то треугольник ABC — тупоугольный. Доказать, что можно провести такую окружность радиуса 1/2, что все данные точки лежат внутри неё или на ней самой.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .