ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 69]      



Задача 107699

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 6,7,8

Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?
Прислать комментарий     Решение


Задача 64448

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.

Прислать комментарий     Решение

Задача 98239

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Остовы многогранных фигур ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что из шести ребер тетраэдра можно сложить два треугольника.

Прислать комментарий     Решение

Задача 107622

Темы:   [ Диаметр, основные свойства ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 7,8,9

В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой – либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.
Прислать комментарий     Решение


Задача 35142

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 9,10

На плоскости дано несколько прямых (больше одной), никакие две из которых не параллельны. Докажите, что либо найдется точка, через которую проходят ровно две из данных прямых, либо все прямые проходят через одну точку.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .